
Clifford algebra or geometric algebra ?

As I began some years ago to study seriously the hestenian geometric algebra I quickly disco-
vered some disturbing facts.

I knew nothing about standard Clifford algebra, and being much more interested in physics than
in pure mathematics I would never have dared to open a book dealing with that abstract alge-
braic speciality. Today I still realize that to understand it in depth I would need several semes-
ters of Bourbakist reconditioning , which of course I will never do.

But geometric algebra opened to me new horizons. I immediately found myself in agreement
with Hestenes vision of mathematics , constructing it and teaching it. And quickly I realized
that his methods where mostly rejected by traditionalists, that the merit of having rejuvenated
Clifford algebra whas contested to him, both by jealous professionals and ignorant amateurs (see
Wikipedia), and that introduction of GA in the learning cycle was far from a won struggle.

Roughly and perhaps with some caricatural deviations, I would classify the attitudes of profes-
sionals and some more or less enlighted amateurs in a few categories :

1/ First of all the theoretical oriented professional algebrists ; they are not at all interested in
Hestenes educational ideas and thus consider the GA as non existant. Their work, whose utility
I of course do not contest, is at high abstract levels and thus unattainable to amateurs and even
perhaps to a majority of professional physicists.

2/The quantum physicists able to manipulate the standard Clifford algebra. They cling of
course to the enormous theoretical corpus elaborated during the last hundred years, which
undoubtedly has produced splendid results in the understanding of reality. They mostly do not
like GA, even reject it violently, not only because they do not want to rewrite their theories, but
also because doing quantum physics with GA ineluctably leads to question the prevailing QM
interpretations !

3/The Working Class in Clifford algebra and/or quantum mechanics, high level students, profes-
sors, research people, some amateurs, to whom Hestenes work has brought a new impetus, new
ideas which they try to utilize in their work. But they always try to rewrite , justify, the new
methods in the standard Clifford algebra. Thus not only they mostly refuse to Hestenes his
merits, but also they destroy voluntarily or not the geometrical and synthetic specificities of the
GA.

4/A very small minority of professionals and amateurs who have understood, or at least think
so, the deep novelty of GA and the ease of its learning process , which authorizes shortcuts
through many mathematical difficulties. Let us cite : the UK Cambridge people (those who still
work in that field ?), some German professors and students, in Amsterdam Dorst and his stu-
dents, very few people in the US, Hitzer in Japan, in France a few oldies (I have the privilege to
know and exchange ideas with Roger Boudet, an unconventional physicist adept of the de Bro-
glie school, who worked with Hestenes ), in France also a few specialists of ray-tracing (Univer-
sity of Poitiers).

I had recently the opportunity to study some parts of Peter Lounesto’s book ”Clifford algebras
and spinors” as an introduction to traditional Clifford algebra, but I was not too happy with it.
I will try to give some details later, but let me first draw attention on a remarkable article
written by a young German physicist, Florian Jung, ” Geometrische Algebra und die Rolle des
Clifford-Produkts in der Klassischen und Quantenmechanik ”, which you can find on Internet.
Lounesto figures in the references, but Jung’s text is much more explicit, and thus reader-
friendly. The detailed equations are easy to follow even with a limited knowledge of german lan-
guage. It is probably the best and most complete text I have read on that subject. Jung’s
article respects the true spirit of GA, and explains the relationship with standard Clifford cal-
culus without giving the impression that Hestenes1 has ” done nothing than giving a snazzy new
name to something that already existed for a long time ... ”.

1. I read that on Internet . If it already existed why wasn’t it exploited in Hestenes manner ?
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P-S or P-S-H ?

If you take a look at pages 50 - 64 of Lounesto’s book you will probably, unless you are already
a specialist of classic Clifford algebra and group theory, find it rather confusing, whether it
speaks about quantum mechanics (the justification of the Pauli Schroedinger equation) or about
the back and forth switching between Cl3 , Mat(2, C) , S . Thus rather than trying to explain it
and perhaps critizise it too severely, I will start with what I wrote in my Internet article ” Spi-
neurs ... encore ” and try to show how it can be rendered more rigorous with very simple means,
that is without introducing more theoretical notions than simple matrix calculations and of
course some knowledge of geometric algebra and elementary quantum mechanics.

I struggled a long time before understanding that the main difficulty about establishing a bijec-
tive relation between the standard Pauli - Schroedinger equation (P-S) :

(1) i~∂tΨ=HSΨ−
e~

2mc
σ.BΨ (where Ψ is a standard column spinor (ψ1, ψ2)

t )

and the Pauli - Schroedinger - Hestenes (P-S-H) equation :

(2) ~∂tφ e1 e2=HS φ−
e~

2mc
Bkekφ e3 (where φ is an even GA multivector)

was not how to switch between (1) and (2) but how to establish an undisputable bijective rela-
tion between (1) and (3) where an adequate matrix spinor ψ (or should we say spinor ope-
rator ?) is substituted to the column spinor Ψ :

(3) ~∂tψσ1σ2=HS ψ−
e~

2mc
Bkσkψσ3

In that task reading F.Jung helped me a lot. Of course once you have (3) the bijective switch
between (2) and (3) is obvious.

But how can we guess what an adequate ψ matrix should be ? I cannot resist to recall the sar-
castic remark which I read for the first time in R.Boudet, ” La théorie intrinsèque de la particule
de Dirac et l’Ecole Louis de Broglie ”, noting that the spinor Ψ is nothing else than a disarticu-
lated quaternion (even multivector in G3) :

(4) Ψ=

(

a0+ ia3
ia1− a2

)

Then if we translate the multivector φ= a0+ak Iek in matrices ψ= a01+ ak iσk we get :

(5) ψ=

(

a0+ ia3 ia1+ a2
ia1− a2 a0− ia3

)

and simultaneously we note that every even matrix in Mat(2,C) has the structure :

(6) ψ=

(

ψ1 −ψ̄ 2

ψ2 ψ̄1

)

(where ψ̄ is the complex conjugate of ψ )

We know of course that those matrices constitute a subalgebra of Mat(2,C) .

The fact that ψ depends only on 4 parameters instead of the 8 theoretically possible, added to
the precisely defined structure of the matrix, is a necessary but not sufficient condition for esta-
blishing a bijective relation between (1) and (3). Now we have simply to calculate the 4 differen-
tial equations corresponding to the 4 components of the matrices on both sides of (3) and verify
that they reduce to two of them. First we establish the ψσ3 and Bkσk matrices :

(7) ψσ3=

(

ψ1 ψ̄ 2

ψ2 − ψ̄1

)

(8) Bkσk=

(

B3 B1− iB2

B1+ iB2 −B3

)
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Then we multiply everything with the first column of the ψ and ψσ3 matrices, which gives follo-
wing results :

(9) ~i∂t

(

ψ1

ψ2

)

=HS

(

ψ1

ψ2

)

−
e~

2mc

(

B3ψ1+(B1− iB2)ψ2

(B1+ iB2)ψ1−B3ψ2

)

The same calculation with the second column gives :

(10) ~i∂t

(

ψ̄2

− ψ̄1

)

=HS

(

−ψ̄2

ψ̄1

)

−
e~

2mc

(

B3ψ̄2− (B1− iB2)ψ̄1

(B1+ iB2)ψ̄2+B3ψ̄1

)

which after a complex conjugation gives :

(11) ~i∂t

(

−ψ2

ψ1

)

=HS

(

−ψ2

ψ1

)

−
e~

2mc

(

B3ψ2− (B1+ iB2)ψ1

(B1− iB2)ψ2+B3ψ1

)

Thus as equations (11) identify with equations (9) we have demonstrated the bijective relation
between (1) and (3) and consequently the bijective relation between the classic P-S equation in
QM and the equivalent P-S-H equation.

Dirac equation and Lorentz groups.

With the same methods one can prove the equivalence of the standard Dirac equation and the
Dirac-Hestenes equation in quantum mechanics. It is easy to see that in the Dirac (4,4) matrices
all columns are deduced from the first one by simple linear transforms and thus that there are
not 32 independant parameters (!), but only 8, that is the same number as in 4-dimensional geo-
metric algebra. That presumes a bijective relation.

Now what about the spinors in Cl(1, 3) ? I only studied the unitary spinors (rotors) operating in
the orthochrone proper Lorentz group. I wrote an article which figures on my Internet site, in
French, but with more equations than text : ” La transformation de Lorentz vue en algèbre géo-
métrique ”. I hope having correctly established the following conclusions :

– The rotor R can be written as the product, not uniquely, of a spatial rotation U and a boost
L , that is :

(12) R=LU f =Re R̃ =LUe Ũ L̃

– If we guess that the complete rotor can be written :

(13) R=α+a+ i b+ iβ with a= akγkγ0 b= bkγkγ0 RR̃ =1

we find that we must satisfy the following not so obvious conditions :

(14) β=0 a.b=0 α2− β2−a
2+ b

2=1

If we replace β = 0 by α= 0 the resulting rotor will realize a space inversion without time
inversion.

– The relation between initial basis, final basis and the rotor is :

(15) R= fµ e
µ /4α= fµ e

µ /(fµ e
µ eνfν)

1/2

Thus the idea of spinors being defined in GA by even multivectors could possibly be generalized,
with some restrictions related to the tasks we want them to do. So it is not surprising to find
different opinions and definitions between high level mathematicians, specialized quantum theo-
ricians, laboratory physicists, some amateurs, etc ...

3



A more general demonstration.

Inspired by a very intersting dissertation by Shyamal S. Somaroo, ” Applications of the Geome-
tric Algebra to Relativistic Quantum Theory ”, I try to rewrite a more elegant and especially
more general demonstration – it must already exist in some paper – , for the switch between
equations (1) and (3) . The general idea is to show, while staying in the even subspace of
Math(2, C) that we can multiply (3) not only by the column vector u= (1, 0)T , but also by u′ =

(0, 1)T and thus by any linear combination of both of them. Thus we can simplify (3) by u

which can be immediately rewritten in GA as (2).

Let us start again with :

(16) i~∂tΨ=HSΨ−
e~

2mc
σ.BΨ

which we transform in :

(17) ~∂tψσ1 σ2u=HS ψu−
e~

2mc
Bkσkψσ3u

We remember that ψ is the matrix defined in (6) and that we have :

(18) σ3u=u σ1σ2u= iσ3u= iu

Let us remember the σk and iσk matrices :

(19) σ1=

(

0 1
1 0

)

σ2=

(

0 −i
i 0

)

σ3=

(

1 0
0 −1

)

(20) iσ1=

(

0 i

i 0

)

iσ2=

(

0 1
−1 0

)

iσ3=

(

i 0
0 −i

)

We note that the iσk matrices are of course even and that the σk matrices are hermitian.

So we can write :

(21) ~∂tψ (σ1 σ2)u=HS ψu+
e~

2mc
(Bk iσk )ψ( iσ3 )u

where all matrices are now even.

What happens if we realize the equivalent in matrix algebra of a passive rotation of the basis σ,
with U real :

(22) σk
′ =UσkŨ where UŨ = ŨU =1 (we designate by Ũ the hermitian transform)

(22 bis) U =

(

0 1
−1 0

)

Ũ =U−1=

(

0 −1
1 0

)

What happens to the different other elements :

– the HS scalar operator doesn’t change ; neither the ∂t operator ;

– the (Bk iσk ) term is an intrinsic even matrix (bivector) ; its components change but globally
it doesn’t ;

– the spinor matrix ψ becomes ψU = ψ ′ (see ” Some additional remarks ”) ; u becomes Ũu =
u′ : we verify ψu= ψ ′u′.

Thus we obviously can write (21) as :

(23) ~∂tψU
(

Ũσ1σ2U
)

Ũu=HS ψUŨu+
e~

2mc
(Bk

′ iσk
′ )ψU

(

Ũ iσ3U
)

Ũu

(24) ~∂tψ
′ (σ1

′ σ2
′)u′=HS ψ

′u′+
e~

2mc
(Bk

′ iσk
′ )ψ ′( iσ3

′ )u′

We can rewrite (21) and (24) :

(25)
r

~∂tψ (σ1σ2)−HS ψ−
e~

2mc
(Bk iσk )ψ( iσ3 )

z

u=0

(26)
r

~∂tψ
′ (σ1

′ σ2
′)−HS ψ

′−
e~

2mc
(Bk iσk )ψ ′( iσ3

′ )
z

u′=0
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Now can we simply suppress the primes in the brackets in (26) ? It seems that is precisely what
Somaroo tells us when describing his A and B interpretations of rotations (page 14). Look at
ψ ′ : it has the same structure than ψ and is the unknown function ; we can call it ψ without
loss of generality. As for the (iσ),s it would seem obvious to any seasoned Clifford algebrist that
after having done the transformation defined by U one can validly express the σ ′,s in the new
basis by the the initial σ matrices. That is simply the transposition to SU(2) of a well-known
propriety of vector rotations. Happily I was reassured in that by a french high level group
theory lesson (Bernard Delamotte : ” Un soupçon de théorie des groupes ” page 39), which one
can find on Internet.

Thus we can write :

(27)
r

~∂tψ (σ1σ2)−HS ψ−
e~

2mc
(Bk iσk )ψ( iσ3 )

z

u′=0

which with (25) justifies :

(28) ~∂tψ (σ1 σ2)−HS ψ−
e~

2mc
(Bk iσk )ψ( iσ3 ) = 0

and the equivalent GA equation.

I am much more happy with that than with ideals and idempotents ...

An unbelievably simple demonstration.

We know that equation (27) must be true, but some elements of the above demonstration might
be hard to swallow. Nevertheless I propose an even simpler one. If it is true why has nobody
already mentioned it ? If it is false where is the error ?

Equation (21) is an obvious consequence of the P-S equation (1) and of the fact that all
matrices in the term between brackets in (27) are even matrices of Mat(2, C). If we take a
deeper look at that term, we might conclude that it could formally be written as a matrix of
linear, differential or not, operators acting on (ψ1, ψ2) and their complex conjugates acting on

(ψ̄
1
, ψ̄2). More precisely one could write (25) as an even operator matrix 2 :

(29) Φu=

(

Φ1 −Φ̄ 2

Φ2 Φ̄1

)

u=0

which implies :

(30) Φ1=0 Φ2=0 and thus Φ̄1=0 Φ̄2=0

If now we multiply by u′ :

(31) Φu′=

(

Φ1 −Φ̄ 2

Φ2 Φ̄1

)

u′=0

Thus, as developped above, the 4 differential equations are reduced to those expressed by (30),
which justifies (25) and (2).

Some additional remarks.

A subject which appears often in Wikipedia talks is that bizarre idea of spinors being square
roots of vectors ! It seems linked to that other often badly explained notion, where we are told
that vectors and spinors obey different rotation rules : if we rotate a spinor by a 2π angle it is
supposed to change sign , so we must rotate it by 4π to restore the initial spinor. Such ideas
much publicized in vulgarization articles, shed a mysterious light on spin and spinors.

2. One must note here that Φ1 is function only of ψ1 and Φ2 only of ψ2 .
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As I naïvely learned about spinors first through GA techniques I did not succumb to spiritist
visions ! Well I must admit that initially I stumbled at formulas like ψϕ supposed to represent

the rotation of a spinor ϕ by a spinor ψ , where one would expect ψϕ ψ̃ . Indeed if you rotate
actively any multivector of any grade with a rotor ϕ you should write ϕA ϕ̃ . But if, as it hap-
pens characteristically with the notion of spin in QM, you have to give an additional rotation to
an intrinsic element of a physical system, that has already be defined by a rotation from a refe-

rence basis , you get ψϕA ϕ̃ ψ̃ = ϕ′ A ϕ̃ ′ . That equation leads to ϕ′ = ψϕ and thus to the -
in my opinion - false idea that spinors are rotated differently than vectors ! The reality of phy-
sics is that the spinors always sandwich characteristic elements ; they are not attached to a spe-
cific reference basis but sit between different reference systems, or active positions of the phy-
sical system.

But let us take a closer look at that rotation question first in GA . We must note that the rela-
tion :

(32) U ′=VU

where U , V , U ′ are rotors , that is unitary spinors in the GA algebra G3 constructed on the real
space R3 , has nothing to do with quantum mechanics. It represents the action of a rotor on its
group, which gives an other rotor. We may call rotation every isometry which is not a transla-
tion and which preserves orientation, but the geometric signification is completely lost as shown
by the following simple example :

(33) [cos (θ/2)+ In sin (θ/2)][cos (ϕ/2)+ In sin (ϕ/2)]= cos (θ/2+ ϕ/2)+ In sin (θ/2+ ϕ/2)

Obviously neither the scalar nor the bivector part on the right could be simply explained by a
rotation. And it would look worse of course if we had chosen the general case with different
rotation axes.

Instead of that if we write :

(34) U ′=Vab Ṽ =Va.b Ṽ +Va∧ b Ṽ = a.b+Va∧ b Ṽ = a.b+ iVn Ṽ

we see, as expected, that the scalar part of (ab) is not changed and that the transformation of
the bivector part is expressed by the rotation of its dual vector (by an angle θ , not θ/2).

Thus to interprete the relation (32) as a rotation of U by an angle given by V has in my opi-
nion no useful mathematical significance. That is only a question of vocabulary. What remains
of course is the fact that if θ/2=2π/2 = π we get V = −1 (!)3 and U ′ = −U . I will not try to
discuss here if that change of sign, which has no incidence on the results of double sided
quantum operations, could nevertheless be detected.4

Let us now work in standard Clifford algebra Cl3 . We define first a class M of (2,2) hermitian
traceless matrices of the form :

(35) M =

(

z x− iy

x+ iy −z

)

In the same class M we find the well known Pauli matrices :

(36) σx=

(

0 1
1 0

)

σy=

(

0 −i
i 0

)

σz=

(

1 0
0 −1

)

Thus we can write :

(37) M = xσx+ yσy+ zσz

3. The fact that usually only that particular value is considered explains perhaps why the non geometrical signifi-
cance is never mentioned. It goes unnoticed.

4. The practical non quantum mechanical entanglement experiences (plate trick, belt trick, ....) are not easy to
explain in mathematical terms. I doubt that they presuppose SU(2) complex matrices ...
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Obviously there exists a bijective relation between the M matrices and the vectors in the real
space R3 . The σ matrices can be identified with the unit orthogonal basis vectors in R3 .

We define also the SU(2) group which consists of all matrices of the following form :

(38) U =

(

α −β̄
β ᾱ

)

with U−1= Ū T =

(

ᾱ β̄

−β α

)

αᾱ + ββ̄ =1

The unit matrix 1 and the iσ matrices are elements of SU(2), where they form a basis.

In R3 the rotation operators are the well known rotation (3,3) matrices which are elements of
the so-called SO(3) group. They act on the vectors in R3.

It is easy to show that the SU(2) matrices define a 2 dimensional representation of rotations, up
to a sign5 :

(39) M ′=UMŨ =(−U)M
(

−Ũ
)

where the general rotation matrix is given by :

(40) U =

(

cos (θ/2)+ i nzsin(θ/2) (inx+ny)sin(θ/2)
(inx−ny)sin(θ/2) cos (θ/2)− i nzsin(θ/2)

)

that is :

(41) U = cos (θ/2) 1+ i(nx σx+nyσy+nzσz)sin(θ/2) with |n|=1

We notice that unlike the matrices in R3, here the operator acts double-sidedly. That explains
the θ/2 instead of θ ! Where is the mystery ?

The SU(2) matrices operate on 2 dimensional complex column vectors of a spin space , that is :

(42)

(

z1
′

z2
′

)

=U

(

z1
z2

)

let us say Ψ′=UΨ

It is interesting to note that, as the U matrices are even, in the sense defined by GA, (42)
implies also :

(43)

(

z1
′ − z̄2

′

z2
′ z̄1

′

)

=U

(

z1 − z̄2
z2 z1̄

)

that is ψ ′=Uψ

Here ψ can of course be defined by a formula like (41), or directly by a matrix like (5).

Let us take a look at a very simple example. In spin space two obvious orthonormal basis vec-
tors are

(

1
0

)

,
(

0
1

)

.

The vector
(

1
0

)

can be considered as the first column of a very simple M matrix , that is
(

1 0
0 −1

)

which according to the definition (35) corresponds to the σ3 basis vector in R3. In

SU(2) it corresponds to the σ3 matrix .

If we rotate that vector in R3 by an angle (θ) around the σ2 basis vector we get6 :

(44) [cos (θ/2)1+ sin (θ/2)iσ2]σ3 [cos (θ/2)1− sin (θ/2)iσ2] =

[cos (θ)1+ sin (θ)iσ2]σ3= cos (θ)σ3−sin (θ)σ1

which is a classical rotation in R3.

But if we rotate the same vector one - sidedly by (θ/2) in the spin space, we get :

5. Thus SU(2) is said to be a double cover of SO(3).

6. Of course we do the practical calculation with GA !!
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(45) [cos (θ/2)1+ sin (θ/2)iσ2]σ3= cos (θ/2)σ3−sin (θ/2)σ1

which as the rotation of a vector Ψ (first column of the matrix ψ ) has to be written :

(46) [cos (θ/2)1+ sin (θ/2)iσ2]
(

1
0

)

= cos (θ/2)
(

1
0

)

− sin (θ/2)
(

0
1

)

That looks indeed like a rotation, but what happens now if we do the same thing about the
σ1 basis vector. We get :

(47) [cos (θ/2)1+ sin (θ/2)iσ1]σ3 [cos (θ/2)1− sin (θ/2)iσ1] =

[cos (θ)1+ sin (θ)iσ1]σ3= cos (θ)σ3+sin (θ)σ2

and :

(48) [cos (θ/2)1+ sin (θ/2)iσ1]
(

1
0

)

= cos (θ/2)
(

1
0

)

+i sin (θ/2)
(

0
1

)

Obviously the geometrical meaning has again been lost ! In classical mechanics making use of
the SU(2) matrices would only generate unnecessary complications.7

Why then all the fuss about that change of sign when θ = 2π ? To try to find an answer we
must now consider quantum physics.

The answer is stunningly simple. In standard quantum physics we do not (or should not ? ,
see ” Spineurs .... encore ” ) use the direct identification between for example the σ3 spinor (or
Σ3 spin vector, which is the first column of the σ3 matrix) and the σz unit vector in R3 . What
we consider is the expectation value of the spin in for example the k-direction, that is :

(49) Ψ̃σkΨ where Ψ represents the state vector .

We use the σ3 matrix in the spin space to define the spin vector. Then of course we get for (spin

up) Ψ1=
(

1
0

)

:

(50) ( 1 0 )σ3
(

1
0

)

= ( 1 0 )

(

1 0
0 −1

)(

1
0

)

=1

and for Ψ1
′ =−

(

1
0

)

, where Ψ1
′ is the vector in spin space which is supposed to be obtained

from Ψ by a θ/2= π rotation :

(51) ( −1 0 )σ3
(

−1
0

)

= ( −1 0 )

(

1 0
0 −1

)(

−1
0

)

=1

The expectation value is the same after the above defined rotation .

The same result is true for the spin down vector Ψ2=
(

0
1

)

.

One must be very careful when expressing the conclusion. In quantum mechanics a rotation of a
spinor operator by an angle θ/2 = π changes the sign of that spinor, in spin space, but does
not change the expectation value of the quantum variable on which it acts.

That is where geometric algebra brings important novelties where a true spin vector, or - better
- bivector, exists in R3 , and there is no more place for an abstract spin space and SU(2) group.
In GA the equations would be written :

(52) (1) σ3 (1)=σ3 that is spin up in R3

(53) (−iσ2)σ3 (iσ2 )=−σ3 that is spin down in R3

But then we enter in the forbidden domain of quantum physics interpretation ... !

G.Ringeisen

June 2013

7. But with GA new interesting possibilities appear even in classical physics.
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